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We want to solve:
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The Problem

We want to solve:

minimize f(x)
x€ER"

when Vf(x) is unavailable and we only have access to noise-corrupted
function evaluations f(x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when V£ is
unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.



The Problem

We analyze the convergence of our method in the stochastic case:

f(x) =f(x) +e,

where ¢ is identically distributed with mean 0 and variance 0° < .
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The Problem

We analyze the convergence of our method in the stochastic case:
f(x) = f(x) +e

where ¢ is identically distributed with mean 0 and variance 0° < .

This is equivalent to solving:

minimize E [f(x)] .

X
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Strongly A-poised Sets




Stochastic Approximation
Iterates usually have the form:
XK = xK 2, G(x9),
where

» G(x*) is a cheap, unbiased estimate for V(x)
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Stochastic Approximation
Iterates usually have the form:
X = XK 4+ 2, G(x¥),
where
» G(x*) is a cheap, unbiased estimate for V(x)

» For Kiefer-Wolfowitz,

F(xX* + cke) — F(xX* — ckey)

GI(X ) - 2ck

where ¢; is the /th column of /,.
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Stochastic Approximation
Iterates usually have the form:
X = XK 4+ 2, G(x¥),
where
» G(x*) is a cheap, unbiased estimate for V(x)
» For Spall’'s SPSA,

20k Ky _ F( Kk _ sk
Gi(x) = F(X* 4 ckd*) — F(x* — cd”)

2Ck5/k

where 6 € R” is a random perturbation vector
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Stochastic Approximation
Iterates usually have the form:
X = XK 4+ 2, G(x¥),
where

» G(x*) is a cheap, unbiased estimate for V(x)

> a, is a sequence of step sizes (specified by the user) satisfying:
oo
Z ax = 00 lim a, =0
k—o00
k=1
Algorithm performance depends significantly on sequence ay.
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Response Surface Methodology

» Build models using a fixed pattern of points, (e.g., cubic, spherical,
or orthogonal designs).

» Finding the design that constructs response surfaces approximating
the function (without few function evaluations) can be difficult for
problems where the user has no prior expertise.



Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.

» Stochastic approximation modified by Dupuis, Simha (1991)
» Response surface methods modified by Chang et al. (2012)
» UOBYQA modified by Deng, Ferris (2006)

Nelder-Mead modified by Tomick et al. (1995)

DIRECT modified by Deng, Ferris (2007)
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Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.

» Stochastic approximation modified by Dupuis, Simha (1991)
» Response surface methods modified by Chang et al. (2012)
» UOBYQA modified by Deng, Ferris (2006)

Nelder-Mead modified by Tomick et al. (1995)

DIRECT modified by Deng, Ferris (2007)

v

v

There are two downsides to such an approach:
1. Repeated sampling provides information about the noise ¢, not f.

2. If the noise is deterministic, no information is gained.



Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points
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Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points

We'd like the class of possible models to be general.



k-fully Linear model

If f € LC and 3 a vector kK = (Ker, Keg) Of positive constants such that

> the error between the gradient of the model and the gradient of
the function satisfies

[VF(y) = Vm(y)|| < kegA Yy € B(x; A),
» the error between the model and the function satisfies
[f(y) = m(y)| < ker A Vy € B(x; A),

we say the model is k-fully linear on B(x; A).
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.\ _________________________________________
a-probabilistically k-fully Linear model

Definition

Let k = (Kef, Keg) be a given vector of constants, and let a € (0, 1).
Let B C R” be given. A random model my generated at the kth
iteration of an algorithm is a-probabilistically k-fully linear on B if

P (my is a k-fully linear model of f on B|Fy_1) > a,

where F,_1 denotes the realizations of all the random events for the
first kK — 1 iterations.
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.\ _________________________________________
Regression Models can be a-probabilistically x-fully

Linear

For a given x e R", A >0, a € (0, 1),
> Y C B(x; A) is strongly \-poised,
» The noise present in f is i.i.d. with mean 0, variance 02 < oo,
> |Y]> C/A%,
Then there exist constants k = (Ker, Keg) (independent of A and Y')

such that the linear model m regressing Y is a.-probabilistically k-fully
linear on B(x; A).
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Measuring Progress

In traditional trust region methods, if x* 4+ s* is the minimizer of my,
the success of moving from x* to x* + s* is measured by

f(xK) — F(xK + s¥)
My (xK) — my(xk + sk)

Pk =
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One Last Part

For our analysis, we need estimates of f(x¥) and f(x* + s) that are
slightly different than those provided by the model functions.

Let FY and F; denote the sequence of estimates of f(x*) and
f(x* 4 sk).

We need to be able to construct estimates satisfying
P[|FR — F(x*)| > emin {Ax, A7} | Fuoa] < 6
and P [[Ff — F(x* + 5| > emin {Ay, A7} |Fia | <6,

for any € > 0 and 6 > 0.



Algorithm 1: A trust region algorithm to minimize a stochastic function
Set k = 0;

Start

Build a a-probabilistically k-fully linear model my on B(x*; Ax);

Compute sk =arg min  my(s);
si[|Ixk—s||<Ak

if my(s*) — m(x¥ + s¥) > BA then
R-F
my(xk) — my(xk + sk)’

Calculate px =

if px > n then

| Calculate x*™ = xK 4 s5; Apy1 = YincAss
else

| x
end
else

| x
end
k = k+ 1 and go to Start;

k+1 k. _ )
= x5 Akp1 = Yeec Dk

k+1 k. _ .
+ =X yAk-Fl_fydeCAkv




Convergence

Under what assumptions will our algorithm converge almost surely to a
first-order stationary point?

» Assumptions on f
» Assumptions on ¢

» Assumptions on algorithmic constants
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Convergence

On some set Q2 C R" containing all iterates visited by the algorithm,
» Vf is Lipschitz continuous with constant L
» { has bounded level sets

The additive noise ¢ observed when computing f is independent and
identically distributed with mean zero and bounded variance 2.

i\ —
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Convergence

The constants o € (0,1), Ygec € (0,1), and yi,c > 1 satisfy

Yine—1

l 1— Yinc
' 4 [ linc_l + = ldsc]

a > max
2%inc Ydec

where
> « is the lower bound on the probability of having a k-fully linear
model,
> Yaec € (0, 1) is the factor by which we decrease the trust region
radius,
> Yinc > 1 Is the factor by which the trust radius is increased.
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Convergence

The constants o € (0,1), Ygec € (0,1), and yi,c > 1 satisfy

Yine—1
Yinc
linc_l + = Ydec
2%inc Ydec

1
o> maxs =, 1—
2 4[

where
> « is the lower bound on the probability of having a k-fully linear
model,
> Yaec € (0, 1) is the factor by which we decrease the trust region
radius,
> Yinc > 1 Is the factor by which the trust radius is increased.

If Yine =2 and Ygec = 0.5 = a > 0.9.
If Yine =2 and Ygec = 0.9 = o > 0.65.
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Proof Outline

If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f.

» Show the sequence of trust region radii A, — 0 almost surely.
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Proof Outline

If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f.

» Show the sequence of trust region radii A, — 0 almost surely.

» Show if Ay ever falls below some constant multiple of the model
gradient, Axi1 > Ay with high probability.
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Proof Outline

If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f.

» Show the sequence of trust region radii A, — 0 almost surely.

» Show if Ay ever falls below some constant multiple of the model
gradient, Axi1 > Ay with high probability.

» Lastly, show that, the sequence of ratios

_ IV
{Yx} = {T

satisfies E [k, 1|Fk] < ¥k when 4, > L. This allows us to prove
[VF(x¥)|| — 0 in probability.
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Algorithm 1: A trust region algorithm to minimize a stochastic function
Set k = 0;

Start

Build a a-probabilistically k-fully linear model my on B(x*; Ax);

Compute sk =arg min  my(s);
si[|Ixk—s||<Ak

if my(s*) — m(x¥ + s¥) > BA then
R-F
my(xk) — my(xk + sk)’

Calculate px =

if px > n then

| Calculate x*™ = xK 4 s5; Apy1 = YincAss
else

| x
end
else

| x
end
k = k+ 1 and go to Start;

k+1 k. _ )
= x5 Akp1 = Yeec Dk

k+1 k. _ .
+ =X yAk-Fl_fydeCAkv




Prototype

> my is a linear regression model on a sample set of (n+ 1)y
sample points, where Cj is defined by

- [ wmax{”“{ﬂ}.

1000 n+1

The sample set consists of C, randomly rotated copies of the set

(XK, xK+ Agey, ..., XK+ Ayen}
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Prototype

> my is a linear regression model on a sample set of (n+ 1)y
sample points, where Cj is defined by

- [ Wmax{"“{éﬂ}.

1000 n+1

The sample set consists of C, randomly rotated copies of the set
(XK X+ Agey, .., XK+ Agey}
» Fg = m3(x¥), where m; is a linear regression model using Cy randomly
rotated copies of the set

{xK 4+ sk xk 4K+ 05Ake1, ..., xK 4+ sk +05Ae,}



Problem Set

53 problems of the form:
f(x)=>_[(1+ )R,
i=1

where o ~ U[-0.1,0.1].
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Problem Set

53 problems of the form:

where o ~ U[—0.1,0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s € S on a problem
p € P to find a function value satisfying:

fx)—f <7 (F(x°)— 1),

where 1, is the best function value achieved by any s € S.



Problem Set

Comments

» We are using the true function value f, not the observed f.

» Since the noise is stochastic, each solver is run 10 times per
problem.

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s € S on a problem
p € P to find a function value satisfying:

fx)—f <7 (F(x°)— 1),

where 1, is the best function value achieved by any s € S.
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Performance Profile

Then the performance profile of a solver s € S is the following fraction:

. tp.s
ps(9) = ] H "min{ys:s€S) = "’H
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Performance Profile

Then the performance profile of a solver s € S is the following fraction:

ps(¢)—|;|’{p€P: o }S¢H

min{t,s:s€S

> ps(1): Fraction of P method s solves first.
> limp—oo Ps(P): Fraction of P method s eventually solves.

> ps(¢): Fraction of P method s solves in under ¢ times the
evaluations required for the best method.



Performance Profile

We compare our prototype against Spall’s versions of Kiefer-Wolfowitz
and SPSA with step sizes as recommended in Sections 6.6 and 7.5.2 of
Spall (2003)

1 1
GFis AP %= o

where A is one tenth of the total budget of function evaluations.

dx =



Performance Profile
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Performance Profile

ps(9)
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Performance Profile
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Another Problem Set

53 problems of the form:

where 0, ~ N (0, (0.1A,)?) and A, = Z Fi(x°) — Z Fi(x*).
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Performance Profile
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Performance Profile
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Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”
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Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

» Generalizing results to ensure a practical algorithm converges.

> For example, not requiring a-probabilistically x-fully linear models
every iteration.

» Smartly constructing a-probabilistically x-fully linear models.
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